US009229794B1

a2z United States Patent (10) Patent No.: US 9,229,794 B1
Schaefer (45) Date of Patent: Jan. 5, 2016
(54) SIGNALING SERVICE INTERFACE MODULE 8,799,641 Bl 82014 Seidenberg et al.
2001/0011298 Al 8/2001 Gosling et al.
: . : 2002/0087548 Al 7/2002 Tasalloti
(71) Applicant: CA, Ine., Islandia, NY (US) 2002/0143954 Al 10/2002 Aiken, Jr. et al.
2003/0046343 Al* 3/2003 Krishnamurthy et al. 709/203
(72) Inventor: Bruce A. Schaefer, Tyler, X (US) 2003/0163560 Al 8/2003 Allen et al.
2003/0191918 Al 10/2003 Flaherty et al.
(73) Assignee: CA, Inc., Islandia, NY (US) 2004/0019643 Al* 1/2004 Zirnstein, JT. «ccocvvrenne. 709/206
2004/0024861 Al 2/2004 Coughlin
(*) Notice: Subject to any disclaimer, the term of this 2007/0169017 Al 7/2007 Coward
. . 2009/0055689 Al 2/2009 Petersen
patent is extended or adjusted under 35)
U.S.C. 154(b) by 2 days. (Continued)
(21) Appl. No.: 13/933,316 OTHER PUBLICATIONS
ed: Johnson, The importance of systems management for a Parallel
(22) Filed: Jul. 2, 2013 Sysplex, 1997 %
Related U.S. Application Data (Continued)
(60) Provisional application No. 61/824,044, filed on May . . .
16, 2013. Primary Examiner — Lechi Truong
(74) Attorney, Agent, or Firm — Stevens & Showalter LLLP
(51) Imt.ClL
GO6F 3/00 (2006.01) 7 ABSTRACT
GO6l’ 9/54 (2006.01) Generating a signaling service message for a message group
(52) US.CL of a sysplex coupled together using a signaling service
CPC e, GO6F 9/546 (2013.01); GOGF 9/547 includes executing, on a computer, a data transfer application
. . . (2013.01) that communicates with a respective partner data transfer
(58) Field of Classification Search application on each member of the message group, the data
CPC ... GOG6F 9/541; GOGF 9/485; GOGF 9/547 transfer application comprised of a plurality of interworking
USPC T TS 719/330 modules including an interface module. Generating the mes-
See application file for complete search history. sage also includes receiving by the interface module a request
. from one of the other interworking modules that is related to
(56) References Cited sending the signaling service message; and based on the
U.S. PATENT DOCUMENTS request, detegninipg by th.e interface module a type of mes-
sage for the signaling service message. Based on the type of
5,167,035 A * 11/1992 Mann etal. ..oooovveevene.n. 714/4.1 message, the interface module identifies a corresponding rou-
5,329,619 A 7/1994 Page et al. tine of an operating system executing on the computer which
5,403,639 A 4/1995 Belsan et al. will generate the signaling service message; and invoking the
2’%2’?3‘1‘ gl N }gggg gglsrlﬁz;tf\l/l' """"""""" 711/152 corresponding routine which causes the operating system to
7.055.153 B2 5/2006 Beck ctal. generate the signaling service message.
7,698,439 B2* 4/2010 Zuberi ... 709/228
7,979,554 B2* 7/2011 Hoetal.ccooovvvrvnnn. 709/227 21 Claims, 28 Drawing Sheets
300 502
MESSAGE GROUP: XCOMPLXQ /
XCOMAFER 304
PLEX=XCOMPLXQ
316
J
310
J
312
XCOMJOB
J YCOMXFER L~206
STCPLEXQ=XCOMPLXQ "
g PLEXQ-XCOMPLYQ
314
L. JCOMUFER L3086
PLEXQ=XCOMPLXQ

US 9,229,794 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
2010/0106778 Al 4/2010 Needham et al.

2011/0099236 Al 4/2011 Vuonget al.
2014/0032491 Al* 1/2014 Neerincx etal. 707/610

OTHER PUBLICATIONS

CA XCOM Data Transport for z/OS; Overview Guide; r11.5; 2009,
60 pages.

Lechi, Truong; Non-Final Office Action; U.S. Appl. No. 13/933,648;
Nov. 14, 2014, United States Patent and Trademark Office; Alexan-
dria, VA.

Truong, Lechi; Office Action; U.S. Appl. No. 13/933,648; Jun. 3,
2015, United States Patent and Trademark Office; Alexandria, VA.
Truong, Lechi; Office Action; U.S. Appl. No. 14/666,962; Jun. 5,
2015, United States Patent and Trademark Office; Alexandria, VA.

Harrell, Robert B.; Office Action; U.S. Appl. No. 13/933,239; Jul. 2,
2015; United States Patent and Trademark Office; Alexandria, VA.
Trong, Lechi; Final Office Action; U.S. Appl. No. 13/933,648; Mar.
19, 2015; United States Patent and Trademark Office; Alexandria,
VA.

Truong, Lechi; Final Office Action; U.S. Appl. No. 13/933,648; dated
Sep. 30, 2015, United States Patent and Trademark Office, Alexan-
dria, VA.

Nick, Jeffrey M.; Overview of IBM System/390 Parallel Sysplex—A
Commercial Parallel Processing System; 1996.

Joshua Joo; Office Action; U.S. Appl. No. 13/933,431; Oct. 30,2015,
United States Patent and Trademark Office; Alexandria, Virginia.
Truong, Lechi; Notice of Allowance; U.S. Appl. No. 14/666,962;
Oct. 30, 2015; United States Patent and Trademark Office; Alexan-
dria, Virginia.

* cited by examiner

US 9,229,794 B1

Sheet 1 of 28

Jan. 5, 2016

U.S. Patent

————

dd¥ &0
ALTHLN

SHINYIS UDHROM

~

7 0l
Z0l

US 9,229,794 B1

Sheet 2 of 28

Jan. 5§, 2016

U.S. Patent

o0z

EMtEN
YHMIOM

g0C

V¢ Ol

voz /|

YINGSS 4O
ALTILN

c0¢

U.S. Patent Jan. 5,2016 Sheet 3 of 28 US 9,229,794 B1

COMPUTER
202
| 204
UTILITY)
OR SERVER
| 226 | 228
202 220
v/ ’
/
224 | 230
\

FIG. 2B

US 9,229,794 B1

Sheet 4 of 28

Jan. 5, 2016

U.S. Patent

% ol
OXTdAN0OX=0XT1d
qog-| HIXWOOX
H3XIODX
o
- =1dAL
v %m%wcw " 7 OXTdHOOX=0XT1d0LS
0% Lo g0rM0dX
K
ole
\L
olg
OXdmoox=0x31d |
y0g-] H39XN00X
F - OXTINOOX dnOYD IOVSSIA

0%

U.S. Patent Jan. 5,2016 Sheet 5 of 28 US 9,229,794 B1

XCOM UTILITY SENDS INQUIRY 462
MESSAGE TO ALL XCOM
SERVERS IN A MESSAGE GROUP

w
RECEIVE REPLY MESSAGES OR| ~ 404
GENERATE NULL RESPONSES

[SELECT A RECEVING SeRveR | ¥6¢

SEND A SCHEDULING MESSAGE | ~ 468
T0 THE RECEIVING SERVER

\
RECEIVE ACKNOWLEDGEMENT | ~ 470
FROM RECEIVING SERVER

FIG. 4

U.S. Patent Jan. 5,2016 Sheet 6 of 28 US 9,229,794 B1

MESSAGE EXIT DRIVEN BY SIGNALING | 502
SERVICES FOR INCOMING MESSAGE

504

OR EXECUTE REQUEST

GET NEW PLQ ENTRY, COPY INCOMING MESSAGE TO PLQ | 506
INSERT PLQ ON END OF RANQ CHAIN OF REQUESTS AND
POST RANQ LISTENER TASK FOR PROCESSING

508

P
ATTACH REQUEST
MESSAGE?

NO

GET NEW PLQ ENTRY, GET NSA ON CHAIN, SETUP NSA TO DISPATCH[~ 510
REQUESTED TP, COPY MESSAGE TO PLQ, STORE PLQ ON END OF
NSA'S PLEXQ CHAIN AND POST XCOM DISPATCHER TO RUN TP.

512

DATA BUFFER MESSAGE?

GET NEW PLQ ENTRY, COPY INCOMING MESSAGE | 514
TO PLQ, APPEND PLQ TO NSAS PLEXQ CHAIN,
POST NSA TO RECEIVE DATA BUFFER.

CRETIRN)=
FIG. DA

US 9,229,794 B1

Sheet 7 of 28

Jan. 5, 2016

U.S. Patent

dg ‘ol

NI)=

ONISST00Y 404 YSN 1SOd ONY SISNOASH
A 40 NvHD SYSN 40 0N NO 074 LN 04 0L
YES [NOILYOIHLON DNIWOONI AdOD ‘AMING Od MIN 1B

(ONVIAINOO

IVANIRSE
S

ON

74S

(LY1SN 31) SONVIWNOD 1SYo0v0yd
A OLS35NOdSH QALY INWNAdY 404
OS5~ |S0IN3S DNITYNIS AS NIAN LIX3 ALLON

U.S. Patent

520
SPLEX TYPE-JON YES

0

551 NO

#PLEX TYPE-LEAVE YES

:

532 NO

APLEX TYPE-QUIESCE =12
533 NO

0

#PLEY, TYPE=SEND YES

0

534 NO

FPLEX TYPE-SENDOTFR —=>1E3
535 NO

0

APLEX TYPE=SENDALL =100

536 NO

0

APLEX TYPEREPLY YES
537 NO

:

FPLEX TYPE=CONVERSE >0

528 N

0

APLEX TYPE=CONVOTHR e
R0

0

Jan. 5, 2016

Sheet 8 of 28

FIG. BC

APLEX TYPE=QUERY

529

#PLEX TYPE=SAVE

US 9,229,794 B1

US 9,229,794 B1

Sheet 9 of 28

Jan. 5, 2016

U.S. Patent

44 9ld

N3y

S1NSH SSI004d
av G| /SH0MI TINYH

/4y 1T OEOWN VIO |

SINFNFMINDY DI LINVEYd
A /v inaodm No s
9SG | YT 404 SHALINVEY QTIng

da old

NHNL 3

SLINSHY $53004d
GG | /SH0MT TIONVH

G

A o osvwiorox]
|

SININRIND3 DI LNV
A vnamosma o asve
CYS= | Nor 404 SYILINVEYd aTInNg

US 9,229,794 B1

Sheet 10 of 28

Jan. 5, 2016

U.S. Patent

294G 9l

C NN)

GG

SLINS3 SSF004d
/540443 F1NVH

occ A T O¥OYI 09SIWOXI |

SINFNFHINOTY DMLY
A vawouima o a3sve
29S| ON3S ¥04 SU3LINYHYd aTng

4G 'Ol

NHNL 3

1G]

SLNS3 S53004d
/540443 FINVH

V) OF0V SIN0OX]
osg 1 ; |

SINTWMINDTY DM LIV
A vamosma o asve
6VS~" (30530 404 SHILINvAYd GG

US 9,229,794 B1

Sheet 11 of 28

Jan. 5, 2016

U.S. Patent

1S Ol

N3y

S1INS3 $SI00Md
10G | /SHOMHT TIONVH

006 A T O¥OYI 09SIWOXI |

SINFNFHINOTY DMLY
A /7vinaouIANG NO 35V
OS9G~ | TIWONIS 404 SYILINYEYd qTIng

HS 9ld

NHNL 3

SLINSHY $53004d
gGG-"| /SN TIONVH

L9G

Ao oudwi 09N]
|

SINTWMINDTY DM LIV
A vamosma o asve
995~ [yHLOONES 404 SHILINVAYd NG

US 9,229,794 B1

Sheet 12 of 28

Jan. 5, 2016

U.S. Patent

G Ol

N3y

S1INS3 $SI00Md
£9G - /SHOMMT TIONVH

A T O¥OYI 09SIWOXI |

994

SINFNFMINDY DI LINVEYd
A iamou No a3sve
S9SG [304IANDD 404 SHILINYHYA aTINg

G ol

NHNL 3

SIS $53008d
oG- /SH0M3 TIONYH

TIV) 040V 0DSWOX]
cog 1 : |

SINTWMINDTY DM LIV
A rvamosma vo qsve
S99 | \1d3 H04 SH3LINVYYA QNG

US 9,229,794 B1

Sheet 13 of 28

Jan. 5, 2016

U.S. Patent

NG Old

C NN)

S1INS3 $SI00Md
/G- /SHOMI TIONVH

2/ A TI¥D 040N Q9SWOXI |

SINFNFMINDY DI LINVEYd
A/ INawodNG No @3Sy
LLS =1 3AYS 404 SU3LINYEYd QNG

®

14 2l

NHNL 3

SIS $53008d
OLG-"| /540N TIONVH

094

Ao oudwi 09N]
|

SINTWMINDTY DM LIV
A rvwamosng vo asve
SIS~ |YH10ANDD 404 SUILINVEYA QNG

US 9,229,794 B1

Sheet 14 of 28

Jan. 5§, 2016

U.S. Patent

6/G | /SH0MT TIONVH

gLG

04 9ld

N3y

SLINS3 SSF004d

A TV 040V ANN0OX! |

ieed

SININFHINDIY DI¥ 13wy
/W INFANOUIANA NO 35Y8
ASN0 404 SHALINYY GIN

@

NG 2l

NHNL 3

SIS $53008d
9/G-"| /SH0M3 TIONYH

LG

Ao 0w daswon]
|

SININRIND3 DI LNV
A vnamosma o asve
VLS~ | 313730 404 SHILINVAYA NG

®

US 9,229,794 B1

Sheet 15 of 28

44

Ol

NN)

2gG-|

S1NSH

553504

/SH0843 TINVH

Jan. 5, 2016

U.S. Patent

1170 OROMA 00K |

SININTINDT DI LINvavd
A wivamosne vo aisv
OBS~ Ty Aua 404 SYILINVEYA TN

U.S. Patent Jan. 5,2016 Sheet 16 of 28 US 9,229,794 B1

SERVICES MESSAGE EXIT

WAIT POSTED BY SIGNAL| ~ €02

APLEXQ TYPE=DEQUELE (REMOVE
PLQ FROM CHAIN FOR PROCESSING)

|~ 604

IN #CONTROL

SEARCH COMMAND TABLE 612
FOR MATCHING ENTRY.
{IN #CONTROL)

i
GATHER DATA APPROPRIATE
FOR COMMAND AND BUILD
RESPONSE BUFFER

| ~C14

#PLEX TYPE=SEND OR #PLEX
TYPE-REPLY (BUFFER WITH
COMMAND RESPONSE)

| -616

FIG. ©

5025
A
SEARCH ROUTINE TABLE
FOR MATCHING ENTRY.
{IN #CONTROL)

o010

J
BRANCH INTO
REQUESTED ROUTINE

U.S. Patent Jan. 5,2016 Sheet 17 of 28 US 9,229,794 B1

701

RETURN

CONFIRNEDY? 1ES

708 NO
FLUSH! 1ES

709 NO

PREPARE TO RECEIVET =12

NO

i

FIG. 7A

U.S. Patent Jan. 5,2016 Sheet 18 of 28

715

CONNECTED
TO REQUESTED PLEXQ
GROUP?

YES

LR s

715
NO

YES

716
[ALLOCATE BUFFERS K———

RETURN OK

US 9,229,794 B1

US 9,229,794 B1

Sheet 19 of 28

Jan. 5, 2016

U.S. Patent

(HOMHI NINLRY)

ds 2ld
GTIED

YINLHYd NO¥S ISNOISTY
22| CIHNDD ¥4 Livm

22l

1S3N0 WHINOD
N35=3dAL X3 1ds

OclL

A NIS=3dAL X3d: |

HLINAT V10 QNY %0078 104INOD

oL 9ld
(0 N3)

3L

WYH90¥d NOILOYSNYYL G353
FHL 3LYILINIOL (34034 YLYa
HLIM Y0078 T04INOO Xd 3Z[1Y1LINI

US 9,229,794 B1

Sheet 20 of 28

Jan. 5§, 2016

U.S. Patent

L Dl
Comnae)

eloynd

“104.INCJ MO 804 3SNOJSH
(JINYINOD 30404

©)

44 '9ld
(D0 N3)

IDYSSTA HOHE3 D14103dS

A w00 01 51 oS

GEL | 1IN ONLLYDION] DY T4 135
A

(39YSSIN NOLLYDLLLON 403
OIENED SNIVINOD M344ng)

e

Scl ONIS=TdAL XTds

]

7 O LW GV 156]

U.S. Patent Jan. 5,2016 Sheet 21 of 28 US 9,229,794 B1

7

#PLEXQ TYPE=DEQUEUE
{RETRIEVE INCOMING PLQ
ENTRY FROM PLEXQ CHAIN)

| 727

[RESIZE DATA BUFFeR | /29

730

COPY DATA PORTION OF
PLQ TO RECEIVE BUFFER

APLEXQ TYPESFREE
(RELEASE THE PLQ STORAGE)

752

FMH-7 RECEIVED!

| -731

YES

CONFIRM REQUEST RECEIVED?

YES

SET FLAGS
INDICATING
FMH-7 RECEVED

| 755

#PLEX TYPE=SEND {SEND

CONFIRMED MESSAGE TO PARTNER)

| 736

T RETIRN)
{_ RETURN)

FIC.

SET FLAGS
INDICATING
FMH-/7 RECEVED

| 737

7F

US 9,229,794 B1

Sheet 22 of 28

Jan. 5, 2016

U.S. Patent

1L Ol
(0N)

vl

Y14 G0 NO (3SY8 'AT3LYINdOddY
SOV T04INOD MO Y LYT
L35 ONY IN3INOO §344n8 JHONDI

H. ©ld
QuOMME NN L3Y) (MONNLRY)

3LVLS AFOR/ANSS

] 31YI4dOYddY OL 135 ONY IN3S

(ININOD 3LYOIONI OL SOV L3S
,

(YINLYYd OL FSNOISH
QINYLNOD ONFS)
(NI5=3dAL XTld#

O]

US 9,229,794 B1

Sheet 23 of 28

Jan. 5, 2016

U.S. Patent

AL Ol
(0 N3)

Gyl

(135 11 G0 HLIM ¥NL4Yd
0L 07314 T0HINOD ONZS)

(N3S=4dAL XT1d#

el

71V ONIONZS HONOYHL J43M
JLYOIONTOL 9Y14 403 135

Lol
@UITTED

oyl

D14 GO NO 35V8 ALY IMdOYddY
SOV T04INOT MOH YLV L3S

US 9,229,794 B1

Sheet 24 of 28

Jan. 5, 2016

U.S. Patent

0GL-]

WL Dld

M0 NUNLRY

3ZIS 11NV430 TWNIDIIO
Ol 434478 1353

617,

(dN0YD OXT1d WOUA LOINDDSIC)

AV

AL X3d#

@

1L 9l
Y0 NHNLY
| 3215 @ELYadn Iw;
434408 MIN JINDOY
QL :
) A Y3H0d ONLISIX 33 |

(FOVHOLS IAVH AQYRITY

U.S. Patent Jan. 5,2016 Sheet 25 of 28 US 9,229,794 B1

LEXQ | 802
TYPE=DEQUEUE

&04

END-OF-DATA FLAG SET?

CONFIRM REQUESTED?
YES

SET FLAGS FOR SENDING |~ 808
CONFIRMED TO PARTNER

*PLEX TYPE=SEND | ~ &10
(CONFIRMED)

(EOTRED)
FIG. A

U.S. Patent

Jan. 5, 2016

Sheet 26 of 28

[Tve-seo P ©12

o4

COUNT IN #CONTROL=CONFIGURED QUEUE

SET FLAG TO GET CONFIRMED
RESPONSE FROM PARTNER.

- 816

(CON

#PLEX TYPE=SEND

FIRM)

| - 818

RECEIVE TO GET CONFIRMED
RESPONSE FROM PARTNER.

| 820

&22

END OF DATA TO SEND?

END OF PROCESS

FIG. 6B

US 9,229,794 B1

U.S. Patent Jan. 5,2016 Sheet 27 of 28

INCOMING USTAT
COMMAND REQUEST

| ~9202

\
COUNT RRQ CONTROL BLOCKS |~ 204
IN LOCAL SERVER REGION,

CALCULATE PERCENTAGE OF UTILIZATION|~ 206
BASED ON CONFIGURED MAXIMUMS.

DOES

LIMT?
YES

TOTAL REQUEST COUNT MEET
OR EXCEED CONFIGURED

208

ADD IN PENALTY OF
100 RANK POINTS,

| ~910

DOES

LIMIT?
YES

LOCAL REQUEST COUNT MEET
OR EXCEED CONFIGURED

912

ADD IN PENALTY OF
100 RANK POINTS,

|~ 914

STORAGE AREA.

A
STORE RANK IN PCONTROL |~ 1@

US 9,229,794 B1

#PLEX TYPE=REPLY

(WRITE USTAT REPLY TO ORIGINATOR)

| -918

FIG. 9

U.S. Patent Jan. 5,2016

402
4

PROCESSOR

Sheet 28 of 28 US 9,229,794 B1

402
/

PROCESSOR

Y

400

404

SYSTEM BUS
]

MEMORY
_| CONTROLLER/
406 CACHE

170
BUS BRIDGE

410

406 LOCAL VEMORY

GRAPHICS
416 | ADAPTER

A\

416 | STORAGE

COMPUTER
4207 ysppLE
MEDIUM
HAVING
CONPUTER
USABLE
PROGRAM
CODE

<: BUS
BRIDGE

<: BUS
BRIDGE

COMM NETWORK
DEVICE ADAPTER

<: BUS
BRIDGE

308 >

STORAGE

305 >

/0

US 9,229,794 B1

1
SIGNALING SERVICE INTERFACE MODULE

RELATED APPLICATIONS

This application claims the benefit of Provisional Patent
Application No. U.S. Ser. No. 61/824,044, filed, May 16,
2013, entitled PLEXQ, by Bruce A. Schaefer, the disclosure
of which is incorporated herein by reference.

BACKGROUND

The present disclosure relates to data transfers, and more
specifically, to negotiated, or coordinated data transfers.

A variety of different ways exist to exchange files and other
data between two systems. One example way can involve
negotiated, or coordinated, data transfers. A client system, or
sending system, schedules a data transfer with a server sys-
tem, or receiving system, and at the scheduled time the client
system transmits the data to the server system which stores
the transferred data in a designated storage location. In such
an environment, user data transfers occur as do meta-trans-
fers. These meta-transfers relate to exchanging meta-data
about the data transfers that are scheduled, ongoing, or com-
pleted. Data transfers of user data can include file transfers,
executable job transfers, and report transfers.

At the receiving end, a plurality of receiving systems can
form a pool of available systems to receive a data transfer
from a sending system. One result of scheduling a particular
data transfer and exchanging meta-data about that transfer is
that one particular receiving system can be selected for the
transfer of user data. That one particular receiving system can
be selected based on how busy each of the plurality of receiv-
ing systems is in order to select the receiving system which is
least busy. However, to perform these scheduling and select-
ing activities, a separate administrative server is used that acts
as a communications middleman between the plurality of
receiving systems and the sending system. In particular, mes-
sages are sent from the sending system to the administrative
server and, based on what it receives, the administrative
server determines what and how to communicate with the
plurality of receiving systems. Any responses from the plu-
rality of receiving systems are delivered to the administrative
server which, then determines how to appropriately commu-
nicate the information in those responses to the sending sys-
tem.

BRIEF SUMMARY

According to an aspect of the present disclosure, a method
for generating a signaling service message for a message
group of a sysplex coupled together using a signaling service
includes executing, on a computer, a data transfer application
that communicates with a respective partner data transfer
application on each member of the message group, the data
transfer application comprised of a plurality of interworking
modules including an interface module. The method also
includes receiving by the interface module, on the computer,
arequest related to sending the signaling service message; the
request being received from one of the other interworking
modules; and based on the request, determining by the inter-
face module, on the computer, a type of message for the
signaling service message. The method includes identifying
based on the type of message, by the interface module a
corresponding routine of an operating system executing on
the computer which will generate the signaling service mes-

10

40

45

50

55

2

sage; and invoking the corresponding routine which causes
the operating system to generate the signaling service mes-
sage.

According to another aspect of the present disclosure a
computer program product for generating a signaling service
message for a message group of a sysplex coupled together
using a signaling service, includes a computer readable stor-
age medium having computer readable program code embod-
ied therewith. The computer readable program code com-
prises computer readable program code configured to execute
a data transfer application that communicates with a respec-
tive partner data transfer application on each member of the
message group, the data transfer application comprised of a
plurality of interworking modules including an interface
module; and computer readable program code configured to
receive, by the interface module, a request related to sending
the signaling service message; the request being received
from one of the other interworking modules. The computer
readable program code also includes computer readable pro-
gram code configured to, based on the request, determine by
the interface module a type of message for the signaling
service message; computer readable program code config-
ured to, based on the type of message, by the interface module
a corresponding routine of an operating system which will
generate the signaling service message; and computer read-
able program code configured to invoke the corresponding
routine which causes the operating system to generate the
signaling service message.

According to yet another aspect of the present disclosure, a
system for generating a signaling service message for a mes-
sage group of a sysplex coupled together using a signaling
service includes a processor and a memory coupled to the
processor, the memory configured to store program code
executable by the processor. The program code includes pro-
gram code, when executed by the processor, configured to
execute data transfer application that communicates with a
respective partner data transfer application on each member
of'the message group, the data transfer application comprised
of'a plurality of interworking modules including an interface
module; and program code, when executed by the processor,
configured to receive by the interface module, a request
related to sending the signaling service message; the request
being received from one of the other interworking modules.
The program code also includes program code, when
executed by the processor, configured to, based on the
request, determine by the interface module a type of message
for the signaling service message; program code, when
executed by the processor, configured to, based on the type of
message, identify by the interface module a corresponding
routine of an operating system executing on the system which
will generate the signaling service message; and program
code, when executed by the processor, configured to invoke
the corresponding routine which causes the operating system
to generate the signaling service message.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present disclosure are illustrated by way of
example and are not limited by the accompanying figures
with like references indicating like elements.

FIG. 1 illustrates an example environment in which differ-
ent systems can cooperatively interact to effect data transfers
in accordance with the principles of this disclosure.

FIG. 2A illustrates a single coupling between two systems
that can communicate in accordance with the principles of the
present disclosure.

US 9,229,794 B1

3

FIG. 2B and FIG. 3 illustrate details about how a system
can couple to other systems to be part of a sysplex and also be
part of alocal network in accordance with the principles of the
present disclosure.

FIG. 4 depicts a flowchart of an example method of imple-
menting data transport functions in accordance with the prin-
ciples of the present disclosure.

FIG. 5A depicts a flowchart of an example process for
handling inbound signaling service messages in accordance
with the principles of the present disclosure.

FIG. 5B depicts a flowchart of an example process for
handling inbound reply messages via a signaling service in
accordance with the principles of the present disclosure.

FIG. 5C.-5P depict a flowchart of an example process for
providing an interface to signaling service messages in accor-
dance with the principles of the present disclosure.

FIG. 6 depicts a flowchart of an example process for lis-
tening for external requests in accordance with the principles
of the present disclosure.

FIG. 7A-7TM depict a flowchart of an example process for
protocol conversion of communication macro routine calls in
accordance with the principle of the present disclosure.

FIG. 8A and FIG. 8B depict a flowchart of an example
process for pacing communication in accordance with the
principles of the present disclosure.

FIG. 9 depicts a flowchart of an example process for deter-
mining utilization workload in accordance with the principles
of the present disclosure.

FIG. 10 illustrates a block diagram of a data processing
system in accordance with the present disclosure.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be illustrated and described herein
in any of a number of patentable classes or context including
any new and useful process, machine, manufacture, or com-
position of matter, or any new and useful improvement
thereof. Accordingly, aspects of the present disclosure may be
implemented entirely hardware, entirely software (including
firmware, resident software, micro-code, etc.) or combining
software and hardware implementation that may all generally
be referred to herein as a “circuit,” “module,” “component,”
or “system.” Furthermore, aspects of the present disclosure
may take the form of a computer program product embodied
in one or more computer readable media having computer
readable program code embodied thereon.

Any combination of one or more computer readable media
may be utilized. The computer readable media may be a
computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, or semiconductor system, appara-
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an appropriate optical fiber with a repeater, a por-
table compact disc read-only memory (CORaM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document,
a computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

10

15

20

25

30

35

40

45

50

55

60

65

4

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device. Program code embodied on a computer
readable signal medium may be transmitted using any appro-
priate medium, including but not limited to wireless, wireline,
optical fiber cable, RF, etc., or any suitable combination of the
foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
anobject oriented programming language such as Java, Scala,
Smalltalk, Eiffel, JADE, Emerald, C++, CII, VB.NET,
Python or the like, conventional procedural programming
languages, such as the “c” programming language, Visual
Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP,
dynamic programming languages such as Python, Ruby and
Groovy, or other programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider) or in
acloud computing environment or offered as a service such as
a Software as a Service (SaaS).

Aspects of the present disclosure are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatuses (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable instruction
execution apparatus, create a mechanism for implementing
the functions/acts specified in the flowchart and/or block
diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that when executed can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions when stored in the computer readable medium
produce an article of manufacture including instructions
which when executed, cause a computer to implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
be loaded onto a computer, other programmable instruction
execution apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other
programmable apparatuses or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable appa-

US 9,229,794 B1

5

ratus provide processes for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

Multisystem Application Program

A multisystem application program can be designed to
have a corresponding portion execute on each one of a plu-
rality of respective systems. These systems include commu-
nication paths that allow for the exchange of data amongst the
plurality of systems. In some circumstance, a subset of the
plurality of systems can be logically grouped together to form
a message group. Creating a logical classification of “mem-
bers of a message group” allows for operations such as
“receive a message from another member”, “transmit a mes-
sage to all members”, “exit the group”, etc. While one of
ordinary skill will recognize that there are many ways to
create such functionality, a description is provided below that
includes details about a particular implementation of how
systems can be coupled together to for logical groups. The
description provides details regarding cross-system coupling
within an MVS environment.

The multisystem application program can be designed and
implemented to exploit a cross-system coupling facility such
as cross-system coupling facility (XCF) and to define one or
more members to a group that resides in a sysplex. A sysplex
(systems complex) is a set of one or more systems (e.g.,
MVS™ gystems) that is given an XCF sysplex name and in
which any authorized programs in the systems can then use
XCF services. XCF services are available in both single and
multisystem environments. A multisystem environment is
defined as two or more MV systems residing on one or more
processors. XCF establishes network communication in a
sysplex. This allows applications in a sysplex to transmit
(send and receive) data across systems. With XCF, applica-
tions can distribute specific functions between multiple pro-
cessors and/or systems. As a result, an installation can spread
the processing workload across the sysplex, taking advantage
of individual system features, as well as providing capabili-
ties for the applications.

A group, or message group, is a set of related members of
the sysplex defined to XCF by a multisystem application in
which members of the group can communicate (send and
receive data) between MVS systems with other members of
the same group. A group can span one or more of the systems
in a sysplex and represents a complete logical entity to XCF.

A multisystem application is defined as a program that has
various functions distributed across MVS systems in a mul-
tisystem environment.

A member is a specific function (one or more routines) of
amultisystem application that is defined to XCF and assigned
to a group by the multisystem application. A member resides
on one system in the sysplex and can use XCF services to
communicate (send and receive data) with other members of
the same group. However, a member is not a particular task
and is not a particular routine. The member concept applies to
all authorized routines running in the address space in which
the member was defined. The entire address space has the
ability to act as that member. All tasks and service request
blocks (SRBs) in that address space can request services on
behalf of the member.

When a member is defined, it can be associated with the
address space in which the “join a group” command (e.g.,
IXCIJOIN) was issued. The member terminates when the
address space terminates or when the system terminates. A
member’s existence can also be tied to a more specific unit of
work by associating the member with either the task or job
step task in which the IXCJOIN was issued.

10

15

20

25

30

35

40

45

50

55

60

65

6

Members of XCF groups are unique within the sysplex.
However, XCF allows the definition of more than one mem-
ber from the same task or address space, and to have those
members belong to different XCF groups.

XCF provides signaling services that allow communica-
tion between members in a sysplex. For example, XCF pro-
vides a set of macros that can be invoked by user programs to
send and receive messages from other members. In particular,
in XCF, a macro IXCMSGOX is provided for sending mes-
sage, IXCMSGIX is provided for receiving messages, and
IXCMSGC is provided for saving, discarding, reprocessing,
forcing a message to completion or obtaining information
about messages. A signaling service message is any piece of
information that one member of a message group wants to
transmit to another member. The data that makes up the
message is of interest to the multisystem application only and
not the operating system that is providing the signaling ser-
vice. A message can vary in length and includes the data that
makes up a message and an additional portion of control
information that can be associated with each message. For
example, signaling services provided within XCF can gener-
ate messages that include 32 bytes of control information that
is separate from the data, or payload, of a message.

Inoperation, a message user routine is written that provides
a mechanism for receiving messages from other members of
the message group. When a member joins a message group,
the address of the message user routine is specified and con-
trol is given to this routine when a message is received by that
member. XCF is designed to pass information about the mes-
sage to the message user routine. For example, XCF can pass
a parameter list and values as well as set one or more control
registers based on the message.

When an active member of a message group issues an
IXCMSGOX macro to send a message to another active
member of the same group, XCF asynchronously passes con-
trol to the message user routine of the target member. The
message user routine runs in service request block (SRB) in
the target member’s primary address space (i.e., the “join-
er’s” address space). The user routine is responsible for han-
dling the message and returning control to the system. Some
of the tasks that the message user routine is responsible for
include:

Checking the message control information area (32 bytes
of data passed as part of the parameter list);

Determining whether there is a message to be received
(e.g., the MESSAGE LENGTH may="0"),

Determining where to place any data in the message buffer
area;

Determining the type or format of the data in the message
buffer area;

Obtaining enough memory to contain all the data in the
message buffer area;

Receiving the message by invoking the IXCMSGIX
macro; and

Processing the data in the message, or queuing the message
to a task for processing and POSTing the task.

In general, message user routines should be reentrant pro-
grams as there could be multiple instances of the message
user routine running concurrently. Because XCF does not
natively provide acknowledgement that a target member has
received a message, the message user routine can provide
such an acknowledgement if desired.

Two different types of messages can be received by a group
member: a) messages sent to a member by other members,
and b) response messages that are sent to a member by other
members in response to a previous message sent by that
member. Different message user routines can be written to

US 9,229,794 B1

7

handle each type of received message. When the member
issues an IXCJOIN macro to join the message group, an
address for one message user routine can be specified using
the “Message User Exit” parameter to handle the first type of
messages. An address for a second message user routine can
be specified using the “Notify User Exit” parameter to handle
the second type of messages. The address for the second
message user routine can also be specified using the “Notify
User Exit” parameter when issuing the IXCMSGOX macro to
send the original message.

Data Transport Function

One example of a multisystem application that can utilize
the XCF and message group facilities described above can
involve negotiated, or coordinated, data transfers. In such an
environment, user data transfers occur as do meta-transfers.
These meta-transfers relate to exchanging meta-data about
the data transfers that are scheduled, ongoing, or completed.
Data transfers can include file transfers, executable job trans-
fers, and report transfers. Within this environment, a number
of receiving systems can form a pool of available systems to
receive a data transfer from a sending system. The sending
system sends details about a possible data transfer to one or
more of the available receiving systems and one of the avail-
able systems is selected to complete the data transfer. The data
transfer can be immediately started or could occur at some
future specified time. Although the term “system” is used in
the above description, the system may be software executing
on a hardware platform within an operating system environ-
ment to perform the roles of a server, a client, or both in order
to achieve data transfers with other systems.

A particular example of such a data transfer system
includes CA XCOM Data Transport® which is a family of
software products that operates under SNA using LU 6.2, or
under TCP/IP, to provide high-speed data transfer between
supported systems such as mainframes, midrange, PCs, serv-
ers, and workstations. It allows the sending of files from their
local system to remote systems across an SNA network or
using TCP/IP, and retrieve files from those remote systems.
The same transfer capabilities are available to the local and
remote systems.

To understand the data transport function in a very simpli-
fied and generalized way, consider a scenario. For example,
when a local system transfers a file to a remote (partner)
system, following steps are performed:

1. Initiation: The user submits a batch program and starts
the menu (the menu interface) or a customer program to
initiate the transfer.

2. Information verification: The data transfer system veri-
fies the information contained in the request. For example:

When requesting a send file transfer, the system can check

whether the local file exists on the local system.

When requesting a receive file transfer, the system can

check whether the file exists on the remote system.

3. Information confirmation: Once the information is con-
firmed, the system can start the file transfer.

4. Completion: When the transfer completes the system
can log the details of the transfer in a log.

Returning to the example of CA XCOM Data Transport®,
this data transfer system allows: a local system to send a data
file to be stored on the remote system in a specified remote
file; a local system to send a report to be printed on a remote
system; alocal system to send a job to be executed on aremote
system; and a local system to retrieve a file from a remote
system and store it in a specified local remote file.

10

20

40

45

55

60

8

One beneficial feature of a data transfer system is to sup-
port checkpoint/restart. Transfers that are stopped or fail prior
to completion should automatically resume, continuing from
the last checkpoint.

An important feature for any enterprise-wide information
product is the ability to effectively control and manage the
distribution of files and work throughout the network. CA
XCOM Data Transport® systems, for example, can maintain
a comprehensive log of all transfer activity. Utilities can be
provided to allow the system administrator to view the log
online and modify the status of pending or currently active
transfers. Details of any transfer errors are can also be main-
tained in the log, allowing rapid problem determination and
resolution. In addition, messages signaling the completion of
any data transfer event can be directed to a user in the net-
work.

Control Blocks

Typical operating systems are made up of programming
instructions that control the operation of the computer sys-
tem. These instructions ensure that the computer hardware is
being used efficiently and is allowing application programs to
run. Z/OS®, for example, includes sets of instructions that, for
example, accept work, convert work to a form that the com-
puter can recognize, keep track of work, allocate resources for
work, execute work, monitor work, and handle output. A
group of related instructions is called a routine or module. A
set of related modules that make a particular system function
possible is called a system component. The workload man-
agement (WLM) component of ZZOS®, for instance, controls
system resources, while the recovery termination manager
(RTM) handles system recovery.

Sequences of instructions that perform frequently used
system functions can be invoked with executable macro
instructions, or macros. Example macros may exist for func-
tions such as opening and closing data files, loading and
deleting programs, and sending messages to the computer
operator. As programs execute the work of a zZZOS® system
for example, they keep track of this work in storage areas
known as a control block. In general, there are four types of
7/OS® control blocks: System-related control block,
Resource-related control blocks, Job-related control blocks,
and Task-related control blocks.

Each system-related control block represents one z/OS®
system and contains system-wide information, such as how
many processors are in use. Each resource-related control
block represents one resource, such as a processor or storage
device. Each job-related control block represents one job
executing on the system. Each task-related control block rep-
resents one unit of work. Control blocks serve as vehicles for
communication throughout the operating system. Such com-
munication is possible because the structure of a control
block is known to the programs that use it, and thus these
programs can find needed information about the unit of work
or resource. Control blocks representing many units of the
same type may be chained together on queues, with each
control block pointing to the next one in the chain. The oper-
ating system can search the queue to find information about a
particular unit of work or resource, which might be: an
address of a control block or a required routine; actual data,
such as a value, a quantity, a parameter, or a name; and status
flags (usually single bits in a byte, where each bit has a
specific meaning).

Thus, one way to “manage” a resource in an operating
system is through the concept of the control block. With
respect to resources, “manage’” means to know the location
and status of the resource and to be able to create, modify, and
delete the resource. Resources include tasks, jobs, users,

US 9,229,794 B1

9

address spaces, devices, etc. A control block can be a con-
tiguous string of bytes in memory that represents, or
describes, a resource. As mentioned above, typically, there is
one control block for each specific instance of each resource.
In z/OS®, for example, every batch job and system task runs
in its own address space which is represented by an address
space control block (ASCB).

Work in an address space is typically organized into
“tasks,” with each task being generally independent of other
tasks in the address space. Each task is made up of requests
(e.g., request for a system service, request to run a program).
Each task is represented by a task control block and each
request is represented by a request block. Thus, in ZOS® for
example, dispatchable units of work are represented by two
kinds of control blocks: task control blocks and service
request blocks.

Task control blocks (TCBs) represent tasks executing
within an address space, such as user programs and system
programs that support the user programs. A TCB contains
information about the running task, such as the address of any
storage areas it has created. TCBs are created in response to
an ATTACH macro. By issuing the ATTACH macro, a user
program or system routine begins the execution of the pro-
gram specified on the ATTACH macro, as a subtask of the
attacher’s task. As a subtask, the specified program can com-
pete for processor time and can use certain resources already
allocated to the attacher’s task.

The region control task (RCT), which is responsible for
preparing an address space for swap-in and swap-out, is the
highest priority task in an address space. All tasks within an
address space are subtasks of the RCT.

Service request blocks (SRBs) represent requests to
execute a system service routine. SRBs are typically created
when one address space detects an event that affects a differ-
ent address space; they provide one mechanism for commu-
nication between address spaces.

The routine that performs the function or service is called
the SRB routine, and initiating the process is called schedul-
ing an SRB. The SRB routine runs in the operating mode
known as SRB mode. An SRB is similar to a TCB in that it
identifies a unit of work to the system. Unlike a TCB, an SRB
cannot “own” storage areas. SRB routines can obtain, refer-
ence, use, and free storage areas, but the areas must be owned
by a TCB. In a multiprocessor environment, the SRB routine,
after being scheduled, can be dispatched on another processor
and can run concurrently with the scheduling program. The
scheduling program can continue to do other processing in
parallel with the SRB routine. As mentioned earlier, an SRB
provides a means of asynchronous inter-address space com-
munication for programs running on z/OS®.

Only programs running in a mode of higher authority
called supervisor state can create an SRB. These authorized
programs obtain storage and initialize the control block with
things such as the identity of the target address space and
pointers to the code that will process the request. The program
creating the SRB then issues the SCHEDULE macro and
indicates whether the SRB has global (system-wide) or local
(address space-wide) priority. The system places the SRB on
the appropriate dispatching queue where it will remain until it
becomes the highest priority work on the queue.

Example Network Environment

FIG. 1 illustrates an example environment in which difter-
ent systems can cooperatively interact to eftect data transfers
in accordance with the principles of this disclosure. A number
of systems, also referred to as worker servers, are grouped
together in a sysplex 118. In particular, system 106, system
110 and system 117 are connected in such a way as to form a

10

15

20

25

30

35

40

45

50

55

60

65

10

sysplex 118. In addition, there is an application 108 that is
persistently executing on system 106 and a similar applica-
tion 112 executing on system 110. These software applica-
tions 108, 112 can be individually referred to as “a server,”
and together they form a multisystem application. More spe-
cifically, the servers 108, 112 are members of a message
group 114, which they could each join when they first began
execution.

Another system 102 can communicate with the message
group 114, which allows the system 102 to communicate with
each ofthe servers 108, 112. An application program 104 also
executes on the system 102. This program 104 may be a server
similar to the other servers 108, 112 already discussed or
could be a utility program that has more limited functionality.
The application 104 can join the message group 114 when it
wants to interact with the servers 108, 112 and then leave the
message group 114 once its tasks have been accomplished. In
contrast, the servers 108, 112 typically are designed to main-
tain their membership in the message group 114. As an
example, the application 104 can be a JCL batch job that
wants to schedule a data transfer from the system 102 to one
of the systems 106, 110 where the servers 108, 112 reside.

One aspect of belonging to a message group is that the
members can exchange messages over a communications
path, or communications channel, defined by the signaling
services provided by an operating system and cross-system
connection facilities. These communications paths are shown
logically as “signaling service” 116 and are described in more
detail in FIGS. 2A and 2B.

FIG. 2A illustrates a single coupling between two systems
communicating in accordance with the principles of the
present disclosure. A system 202 running a utility application
204 may want to exchange messages with a worker server 208
running on a remote system 206. These system 202, 206 may
be connected with a single physical link 210. For example, the
physical link 210 can include an Ethernet cable or a wireless
link. However, that single physical link 210 may support a
number of different types oflogical communication channels.
Two such logical communication channels 212, 214 are
shown in FIG. 2A such that the systems 202, 206 can be
described as “coupled” together via either of the logical com-
munication channels 212, 214. As described below with ref-
erence to FIG. 2B, two separate physical links can also be
used to couple systems together. Thus, in that instance, each
of'the two logical communications channels 212, 214 of FIG.
2 A would be paired with its own, respective separate physical
link as well to achieve such coupling.

FIG. 2B illustrates details about how a system 202 can
couple to other systems to be part of a sysplex and also be part
of'alocal network. In particular, the system 202 can include a
network interface 222 that is connected to an IP network.
Furthermore, the utility application 204 includes some
parameter setting that determines which IP port it listens to
for incoming messages. Thus, network packets 224 can be
formed at a sending system in such a way that they specify an
IP address and port number that are appropriate to deliver the
packets 224 to the utility application 204 running on the
system 202. The operating system of the computer 202 pro-
vides a TCP/IP network stack 226 to facilitate communica-
tions in this manner.

Separate from the network interface 222, the system 202
also includes a channel-type connection 220. All participat-
ing members of a sysplex connect via a channel-type connec-
tion 220. Signaling service messages 230 are delivered to, and
transmitted from, this type of connection and, within the
operating system, signaling services functionality 228 is pro-

US 9,229,794 B1

11

vided to deliver messages to, and receive messages from, the
utility application 204 and this channel-type connection 220.

FIG. 3 illustrates a more specific example network envi-
ronment 300. In this environment 300, a utility program
XCOMIJOB 310 is communicating with the message group
XCOMPLEXQ 302 with regards to previous, ongoing, or
completed data transfers involving the message group
XCOMPLEXQ 302. In particular three different data trans-
port servers XCOMXFER 304, 306, 308 joined the message
group XCOMPLEXQ 302 when each first started execution.
XCOMIJOB 310 can temporarily join the message group 302
when communicating with all three servers 304, 306, 308 via
signaling services 312. Within the environment 300, data
transport functions as described in an earlier section can take
place amongst the different applications 304, 306, 308, and
310. Also, within the environment 300 of FIG. 3, each server
304, 306, 308 may have an identifier “ServerID” that
uniquely identifies it within the message group. Similarly,
XCOMIJOB 310 can be assigned a name when it is invoked; it
is this name that the other group members can use when
responding back to XCOMIOB 310. As shown, XCOMJOB
310 can run on a system 316 that is also hosting its own server
XCOMXFER 314.

However, of interest to the present disclosure are the meta-
data communications that can be exchanged between systems
that relate to an actual data transfer. In particular, internal data
transport meta-data can include data related to scheduling,
inquiring upon, or managing file transfers. In accordance with
the principles of the present disclosure, a protocol is devel-
oped by which meta-data can be exchanged with one or more
data transport servers that are members of the same message
group. This protocol can include a definition of the data
format that is used to process the communication. Addition-
ally, part of the protocol definition can include techniques for
controlling the flow of data between message group mem-
bers. Using this protocol, commands and their corresponding
responses can also be exchanged between message group
members. For convenience, data transport servers may be
referred to as “XCOM servers” herein and message groups
within a sysplex may be referred to as “PLEXQ groups™.

FIG. 4 depicts a flowchart of an example method of imple-
menting data transport functions in accordance with the prin-
ciples of the present disclosure. In step 462, an XCOM utility,
invoked to initiate transfer of data to a remote partner via an
XCOM server, sends an inquiry message to all potential can-
didate servers which can host the transfer (i.e., within the
same PLEXQ group). In particular, the inquiry message asks
each potential server to provide a reply message about its
current workload. The inquiry message is generic and is sent
to all tasks connected to the PLEXQ group, except itself. Only
servers, however, respond to the inquiry message. Other
XCOM utilities that might be members of the PLEXQ group
do not respond.

In step 464 replies are received by the XCOM facilities
from the XCOM servers in the PLEXQ group. A null
response is generated on behalf of any servers that do not
respond within a pre-determined length of time, effectively
removing those servers from consideration. Based on the
reply messages, the XCOM utility program selects, in step
466, a receiving server for the data transfer. Reply messages
can include such information as Server ID (PLEXQ MEM-
BER name), transaction or job ID, the corresponding token
that uniquely identifies the server in the PLEXQ group, and a
numerical rank of the server’s suitability to receive new work
requests. The token can be used to uniquely identify a subse-
quent thread of related messages, and their temporal sequence
can be maintained in First-In-First-Out order.

10

15

20

25

30

35

40

45

50

55

60

65

12

Next, in step 468, the XCOM utility sends a scheduling
message (SCHEDULE request) informing the receiving
server of transfer specifics such as sending and receiving file
names, locations (if necessary) that the XCOM utility wants
to transfer, along with the time the transfer is to start (which
may, for example, be based on the initiating server’s clock) or
immediately. Full and complete details about the transfer are
contained within the buffer, which is wholesale transmitted to
the selected server so that the transfer may be performed.
Values not supplied in the request buffer are either defaulted
or taken from the initiating server’s configured values.

The server that receives the transfer schedule request
acknowledges the success or failure of the SCHEDULE
request by sending back an XCOM specific message where
they are received in step 470. Successful SCHEDULE
requests receive the request number of the newly-created
transfer request, while failed SCHEDULE requests receive a
message with specific information about the failure. Begin-
ning with step 468, all communication between the XCOM
utility and the selected server are exchanged directly between
those two tasks—as opposed to being broadcast to all mem-
bers of the same PLEXQ group. However, all the messages
exchanged in steps 462-470 may be sent via the signaling
service.

Now that the signaling service messages have been used to
schedule the transfer, the PLEXQ interaction between the
XCOM utility and the server is complete. The actual data
transfer is performed as it typically has been done in the past
over a network link such as TCP/IP or SNA. In the case of
multiple transfers being scheduled within one execution of
the XCOM utility, the process starts over beginning with the
sending of the inquiry message for the selection of the best
candidate server to receive the request. This process is done
for each transfer request individually.

In addition to the ability to SCHEDULE transfers via the
signaling service of the PLEXQ group, it is also possible to
programmatically INQUIRE on the status of those individual
transfers directly from the server to which the transfer was
scheduled. This can be accomplished using specific informa-
tion (e.g., PLEXQ group name, MEMBER name, and a
unique identifier used to locate the transfer request), which
may all be included in the received schedule confirmation
message of step 410.

The ability may also be implemented to retrieve status
information (including HISTORY) of pending, active and
completed transfers, which can then be written to an output
file for further processing. In this case, a single request can be
broadcast to all servers in the PLEXQ group and each server
begins sending these status (or HISTORY) records back to the
requesting XCOM utility. It is this flow of information that
can use the flow control techniques so as not to overwhelm the
XCOM utility with incoming status records. Again, of par-
ticular interest to the present disclosure is the managing of the
meta-data request/response interaction with one or more
servers.

When they execute, XCOMJOB utility jobs connect to a
message group, to which worker servers have already joined.
The XCOMIOB utility communicates with the member serv-
ers in the message group to manage data transfer workload
and activity. Using the XCF signaling service allows for a new
protocol that may be substituted for SNA and TCP/IP when
performing meta-transfers between XCOMJOB and XCOM
servers. A message group can be used to communicate with
one or many servers, thus it can be used as an alternate
protocol for performing transfer scheduling and inquiry for
even an individual server.

US 9,229,794 B1

13

In the description below, reference is frequently made to
setting parameter values. One example way to accomplish
this is to define a configuration dataset. It can include a
collection of startup parameters and default values that are
applied to the XCOM region to be used for server initializa-
tion. A “region” refers to a collection of system resources
allocated to a particular server. Other parameter values can be
passed to specific executing jobs by passing the name of an
appropriate configuration dataset for that particular job. One
benefit of using the signaling service is that a message exists
only until it has been processed by the Message Exit which
runs as an SRB in the target member’s address space. No
special or additional configuration of the signaling service
needs to be performed, and the number of potential members
is limited only by the resources (or configuration) of the XCF
that serves to host a message group.

The data transport server (e.g., XCOMXFER) can include
the following features that will facilitate communicating
meta-data in accordance with the principles of the present
disclosure:

define a parameter (PLEXQ) within the existing server to
allow the specifying of a message group name to which the
server is to join as a member;

configure storage management macro calls in the server
and the XCOMJOB utility to support both TASK and SRB
mode;

define a parameter (STCPLEXQ) to the XCOMIOB utility
to allow specitying of the message group name to which the
XCOMIJOB batch utility is to connect to process messages;

a service module (XCOMPLEX) which contains code to
issue the IXCxxxxx macro calls to interface with the signal-
ing service module of the operating system, and which also
contains the exit code which gets dispatched to process
incoming messages and responses;

alistener module (XCOMRANQ) which will process com-
mands received via the signaling service from other XCOM
regions, and to also process work queued by the message
handling exits;

a high-level interface module (XCOMHVTQ) which will
process standard network commands (e.g., #SEND,
#RECEIVE, etc.) and convert them for processing over the
signaling service;

define a control block PLXDSECT to provide storage for
maintaining status information and work areas for messages
utilizing the signaling service;

a#PLEX macro which invokes signaling services using the
above-mentioned XCOMPLEX service module; and

a #PLEXQ macro to create, enqueue, dequeue, and free
entries on a chain which holds queued requests for work and
data buffers related to messages using the signaling service,
and to define the layout of an individual chain entry. For
convenience, the chain can be referred to herein as a “PLEXQ
chain” and each entry can be referred to as a “PLEXQ entry”.

A data transport server (e.g., XCOMXFER) can be consid-
ered as a collection of cooperative modules that operate
together to accomplish desired tasks related to data transfers.
Thus, in additional to a variety of modules that operate to
accomplish actual user data transfers, XCOMXFER supports
the modules discussed above such as XCOMPLEX, XCOM-
RANQ, and XCOMHVTQ. Because some of the signaling
services related activities may operate in either TASK or SRB
modes, all routines that obtain or free virtual storage for
dispatched work should use STORAGE OBTAIN/RELEASE
macro calls available from the operating system.
XCOMIOB

The utility program XCOMIOB mentioned above can be
thought of as the primary user interface for data transfer

10

15

20

25

30

35

40

45

50

55

60

65

14

related processing. As such, XCOMJOB will be able to sup-
port the signaling services infrastructure modules XCOM-
PLEX and XCOMHVTQ. Similar to the server, all XCOM-
JOB routines that obtain or free virtual storage for dispatched
work should use STORAGE OBTAIN/RELEASE macro
calls available from the operating system. As discussed more
fully below, XCOMJOB attaches the appropriate Transaction
Program based on the TYPE=parameter provided when
XCOMIOB is invoked.

The executable utility (e.g., XCOMJOB) can run on a local
system and be invoked to perform a data transfer related task
oractivity. In JCL, for example the following snippet could be
used:

/ISTEPO1 EXEC PGM=XCOMIJOB,

/IPARM=("TYPE=SCHEDULE,DFLTAB=XCOMDFLT,

STCPLEXQ=PLEXQ1’)

This JCL snippet uses “PARM?” to pass a string of param-
eters such as the type task to perform (e.g., SCHEDULE), a
set of default settings for variables and options (e.g., XCOM-
DFLT), and the name of a message group that includes one or
more worker servers (e.g., PLEXQ1). Three different types of
activities that may be beneficial to treat separately is SCHED-
ULE, EXECUTE, and INQURE. TYPE=EXECUTE relates
to when a file from the local system is sent to replace a file on
aremote system through the execution of a non-queued trans-
fer. TYPE=SCHEDULE is when a file from the local system
is sent to replace a file on a remote system through the execu-
tion of a queued transfer. TYPE=INQUIRE relates to exam-
ining the status of those file transfers.

TYPE=INQUIRE does not initiate file transfers, unlike the
TYPE=EXECUTE and TYPE=SCHEDULE modes, but
examines the status of transfers that were previously initiated
by TYPE=SCHEDULE. It waits until the transfers have com-
pleted and issues a return code reflecting the status of the
transfers.

The primary use of TYPE=INQUIRE is in batch job
streams where some job steps are dependent upon the suc-
cessful completion of other job steps that transfer files. The
dependent steps can execute conditionally based on the return
code issued by TYPE=INQUIRE.

When a transfer is scheduled, an INQUIRE data set may be
included in that JCL so that the request number and a time
stamp can be written into the INQUIRE data set. In the
INQUIRE step, this same request number can be used to
reference the same INQUIRE data set. The INQUIRE process
then can interrogate the remote location to locate the transfer.
If the transfer is pending or active, it is listed in a predeter-
mined, and agreed upon, data set. If the transfer has com-
pleted, whether successful or unsuccessful, it can be logged in
a history file. Both the request number and the time stamp for
that transfer can be used to search for the transfer. The return
code passed back by the INQUIRE step is determined by
where the transfer was found and the actual status of the
transfer.

Another useful task or activity is the TYPE=HISTORY
activity retrieves history records based on parameters sent
with the request. Once retrieved, those history records can be
passed to some type of report generator that processes them
and formats them into readable, user defined report output.

If a group of systems have been grouped together as a
message group, then a local system can send requests to the
group, which will allow all the group members to receive the
request. Thus, a history retrieval request can be delivered to
more than one remote system.

Tracing functionality can be implemented to show the
exchange of data between members of a message group.
Entries in an output dataset can be created to show the state of

US 9,229,794 B1

15

communications as well dumps of buffer content to facilitate
problem determination related to signaling service activities.

As mentioned earlier, a default table of parameters can
include configuration for parameter values that are relevant to
signaling service communication. Examples of such param-
eters can include:

PLEXQ—specifies the name of the message group to
which the server (XCOMXFER) is to connect. This param-
eter applies to the server.

STCPLEXQ—specifies the name of the message group to
which the XCOMIOB batch utility is to connect. This param-
eter applies to XCOMIOB executions using TYPEs other
than EXECUTE. There can be error checking code to deter-
mine if a server is already connected to the message group in
order for the request to complete successfully.

Transfers can be scheduled either to the message group or
directly to a server using the SNA or TCP/IP protocol. Trans-
fers can be scheduled to a message group by using the STC-
PLEXQ parameter in the EXEC PARM of the XCOMIOB
utility program. Connections established to a message group
do not use SNA or TCP/IP protocols, but rather a proprietary
messaging protocol which uses SYSPLEX Signaling Ser-
vices as its transport layer.

XCOMPLEX

XCOMPLEX is the module, as mentioned above, that pro-
vides interface services between XCOM communication
requests and the signaling service. It is responsible for issuing
the IXCxxxx macros on behalf of callers. XCOMPLEX
acquires the control block PLXDSECT, which provides per-
sistent storage for processing signaling service requests ifone
is not provided by the caller. The signaling service functions
include IXCJOIN to connect to a message group, IXCLEAVE
to disconnect from a message group, various IXCMSGO
requests with differing attributes, and IXCMSGI that are
issued from the Message User Exit and the Notify User Exit.

The Notify User Exit is configured to parse the replies from
member servers in a message group and examine the CON-
TROL data area to determine which server is best able to
service the incoming request to schedule a transfer. This exit
is only driven and, therefore, the gathered replies are only
valid, when in response to an internal command. For example,
a USTAT command will be discussed that is issued to poll the
message group member servers for an assessment of the
activities currently being processed by each server. This exit
will extract replies from each server and store them on the
PLEXQ chain for the requestor. The unit of work which
initiated the USTAT command is then POSTed.

The Message User Exit is configured to process incoming
message requests that were either explicitly or generically
directed to the local server. Information regarding the type
and disposition of the incoming message can be encoded in
the 32 bytes of CONTROL information defined by the sig-
naling service protocol. The expected operation of the Mes-
sage User Exit is such that if a local unit of work is expecting
and waiting for a message reply, the data in the message is
stored in the PLEXQ anchored in the appropriate NSA, and
the unit of work is POSTed so that what it is processing may
continue. Unsolicited messages are handled according to the
type of request represented in the CONTROL fields; such
handling can include allocating the necessary control blocks
and storage which are to be used to process the request opera-
tion.

All signaling service operations, with the exception of
IXCMSGI, can be initiated via the #PLEX macro. The
#PLEX macro acts as the interface between the XCOMPLEX
service module and all requesting programs as is described in
further detail below.

15

20

35

40

45

55

16

FIG. 5A depicts a flowchart of an example process for
handling inbound signaling service messages in accordance
with the principles of the present disclosure.

In step 502 an incoming signaling service message is
received and that event triggers this message user exit routine.
In step 504, the routine determines, from the 32 byte control
block, whether the message is a command message or an
execute routine message. If it is, then in step 506, the 32 bytes
are considered a new PLEXQ entry and are added to the end
of a chain of entries to be processed by RANQ. Also, the
XCOMRANQ process is POSTed so that it knows the entry
has been added to the chain.

Ifthe message fails the test of step 504, then it is checked to
see if it is an ATTACH request for a transaction program in
step 508. If so, then in step 510 the 32 bytes are considered a
PLEXQ entry and a network service anchor (NSA) to dis-
patch the request transaction program is obtained. The 32
bytes are copied to the PLEXQ chain of the NSA and the
transaction program is dispatched.

A third possibility is that, in step 512, the message is
determined to be a data buffer message. If so, then the 32
bytes is appended to the NSA’s PLEXQ chain and the NSA is
POSTed in order to receive the buffer.

FIG. 5B depicts a flowchart of an example process for
handling inbound reply messages via a signaling service in
accordance with the principles of the present disclosure. In
step 520 an incoming signaling service reply message is
received and that event triggers the Notify User Exit routine.
In step 522, the routine determines if the reply message is
because of a USTAT command. If so, then in step 524, the 32
bytes of the control block of each reply message is added to
the PLEXQ chain of the requestor (i.e., NSA for that
requestor). That NSA is also POSTed when all responses have
been received.

FIG. 5C. depicts a flowchart of an example process for
providing an interface to signaling service messages in accor-
dance with the principles of the present disclosure. When
some other XCOM module invokes a #PLEX macro call, the
code in XCOMPLEX will be performed to call the appropri-
ate IXCxxxx macro provided by the operating system. The
#PLEX calls and IXCxxxx macros relate to actions involving
a message group. For example, a module will call #PLEX
TYPE=zzzz where “zzzz” is a function such as JOIN,
LEAVE, SEND, etc. The XCOMPLEX service module deter-
mines the parameters needed for that function and builds the
statement to call the appropriate IXCxxxx macro using the
parameters. These parameters can be determined by the
default values that have been defined as well as values
included in the #PLEX call received from a requestor.

FIG. 5C depicts the XCOMPLEX module determining
whether the #PLEX call is a JOIN (step 530), LEAVE (step
531), QUIESCE (step 532), SEND (step 533), SEND TO
OTHERS (step 534), SEND TO ALL (step 535), REPLY
(step 536), CONVERSE (step 537), Converse WITH OTH-
ERS (step 538), SAVE (step 539), DELETE (step 540),
QUERY (step 541), and QUERY ALL (step 542). Based on
this determination, an appropriate IXCxxxx macro call is
built and initiated. The result is that a signaling service mes-
sage is sent to the appropriate member(s) of a message group.

FIG. 5D illustrates that the necessary parameters for a
JOIN are determined (step 546) and that these parameters are
used to make an IXCJOIN macro call in step 547. Any
responses or errors are handled in step 548. The parameters
for performing a JOIN (and any of the other macro calls of
FIG. 5C can be identified from the parameters included with
the call (e.g. #PLEX TYPE=JOIN), the control block data
structure, and the default options table for the XCOM server.

US 9,229,794 B1

17

For example, in step 547, these parameters are then used to
construct a properly formed IXCxxxx (e.g., IXCJOIN) macro
call. As an example, the following macro call:

#PLEX TYPE=JOIN Join PLEX messaging group

invokes the following IXCJOIN macro in module XCOM-

PLEX

5

18
FIG. 5P illustrates that the necessary parameters for a
QUERYALL are determined (step 580) and that these param-
eters are used to make an IXCQUERY macro call in step 581.
Any responses or errors are handled in step 582.

XCOMRANQ

IXCJOIN GRPNAME=(R2), GROUP name in PLEXQ table
MEMNAME=NO_MEMNAME,
ANSLEN=QUAA_LEN,
Answer area (returned QUAMEM)

Member data

Address of the GROUP EXIT
Address of the NOTIFY EXIT
Address of the MESSAGE EXIT
This is two-way communication
Associate it with the RANQ task
Not a persistent connection

User State Length

User State Info

Return code

Reason code

ANSAREA=QUAMEMI,
MEMDATA=PLXMBRDT,
GRPEXIT= (R7),
NOTIFYEXIT (RS),
MSGEXIT=(R9),
CANREPLY=YES,
MEMASSOC=TASK,
LASTING=NO,
USLEN==A(PLXSTATL),
USTATE=PLXSTAT,
RETCODE=PLXRC,
RSNCODE=PLXRSN,
MF=(E,PLXJOIN,COMPLETE)

+

Let XCF generate member name +
Answer area length +

RS

FIG. 5E illustrates that the necessary parameters for a
LEAVE are determined (step 543) and that these parameters
are used to make an IXCLEAV macro call in step 544. Any
responses or errors are handled in step 545.

FIG. 5F illustrates that the necessary parameters for a
QUIESCE are determined (step 549) and that these param-
eters are used to make an IXCQUIES macro call in step 550.
Any responses or errors are handled in step 551.

FIG. 5G illustrates that the necessary parameters for a
SEND are determined (step 552) and that these parameters
are used to make an IXCMSGO macro call in step 553. Any
responses or errors are handled in step 554.

FIG. 5H illustrates that the necessary parameters for a
SENDOTHR are determined (step 556) and that these param-
eters are used to make an IXCMSGO macro call in step 557.
Any responses or errors are handled in step 558.

FIG. 5l illustrates that the necessary parameters for a SEN-
DALL are determined (step 559) and that these parameters
are used to make an IXCMSGO macro call in step 560. Any
responses or errors are handled in step 561.

FIG. 5] illustrates that the necessary parameters for a
REPLY are determined (step 562) and that these parameters
are used to make an IXCMSGO macro call in step 563. Any
responses or errors are handled in step 564.

FIG. 5K illustrates that the necessary parameters for a
CONVERSE are determined (step 565) and that these param-
eters are used to make an IXCMSGO macro call in step 566.
Any responses or errors are handled in step 567.

FIG. 5L illustrates that the necessary parameters for a
CONVOTHR are determined (step 568) and that these param-
eters are used to make an IXCMSGO macro call in step 569.
Any responses or errors are handled in step 570.

FIG. 5M illustrates that the necessary parameters for a
SAVE are determined (step 571) and that these parameters are
used to make an IXCMSGC macro call in step 572. Any
responses or errors are handled in step 573.

FIG. 5N illustrates that the necessary parameters for a
DELETE are determined (step 574) and that these parameters
are used to make an IXCMSGC macro call in step 575. Any
responses or errors are handled in step 576.

FIG. 50 illustrates that the necessary parameters for a
QUERY are determined (step 577) and that these parameters
are used to make an IXCQUERY macro call in step 578. Any
responses or errors are handled in step 579.

25

30

35

40

45

50

55

60

65

XCOMRANQ is a module that provides listener services
for a server that is a member of a message group; it is attached
as a subtask in an XCOM server address space but maintains
its own NSA control block. XCOMRANQ can process the
following commands:

USTAT: an internal command to gather statistics about the
local server and REPLY (via the #PLEX macro) to the issuer
of the command

STAT: an operator command requesting a display of statis-
tics from the local server.

XSHOW: an operator command requesting a display of
locally-initiated transfers and their status.

XRSHOW: an operator command requesting a display of
remotely-initiated transfers and their status.

WTOLOG: acommand to write an accompanying buffer to
a log dataset and to the SYSLOG.

TRACE: a command to write an accompanying buffer to a
trace dataset.

XCOMRANQ can be ATTACHed as a subtask and allo-
cated its own NSA. Initially it can check for entries in the
PLEXQ chain via the #PLEXQ=DEQUEUE macro call. If
entries exist on the PLEXQ chain, they will be extracted and
processed. Once the #PLEXQ=DEQUEUE macro returns a
QUEUE empty condition, the XCOMRANQ listener task
enters a WAIT state until POSTed by the signaling service
message user exit. When POSTed, the XCOMRANQ listener
code will initiate the checking of the PLEXQ chain again.

Other modules interface with XCOMRANQ by placing
entries in the PLEXQ chain via the #PLEXQ=ENQUEUE
macro call. This data that is queued on the PLEXQ chain is
mapped using the control block PLQDSECT. The PLQD-
SECT is mapped by the #PLEXQ TYPE=DSECT macro call.

FIG. 6 depicts a flowchart of an example process for lis-
tening for external requests in accordance with the principles
of the present disclosure. In step 602, the listener process
starts (e.g., exits a WAIT state) when POSTed by a signaling
services message user exit indicating that a new entry has
been added to the PLEXQ chain. It then, in step 604, issues a
#PLEXQ macro call (e.g., #PLEXQ TYPE=DEQUEUE) to
remove the PLEXQ entry for processing. In step 606, a deter-
mination is made whether the entry is a command or an
execute request. This determination is made based on the
information in the 32 bytes of CONTROL information
encoded as described below with respect to the #CONTROL
macro.

US 9,229,794 B1

19

If the entry is an execute request, then in step 608 the
routine specified in the CONTROL information is deter-
mined and, in step 610, control is branched to this routine.

If the entry is a command, then in step 612 the command
specified in the CONTROL information is determined. In
step 614, the parameters used to execute the command are
determined, it is executed, and any response is built into a
response buffer. In step 616, the response buffer is sent using
either a #PLEX TYPE=SEND or a #PLEX TYPE=REPLY
macro call.

XCOMHVTQ

XCOMHVTQ is a high-level interface module that con-
verts standard XCOM communication macros (e.g. #SEND,
#RECEIVE, etc.) to an analogous #PLEXQ code to initiate
signaling service functions. Requests to RECEIVE data can
check the PLEXQ chain for entries via the #PLEXQ
TYPE=DEQUEUE macro. Each communication macro can
invoke a unique communication command request that is
processed within the module by a specific routine.

As an example, XCOMHVTQ can broadcast a USTAT
command to all members of a message group to select a best
target for a data transfer. XCOMHVTQ can then interpret the
results received from the servers and update fields in the NSA
and PLXDSECT so that subsequent communications occur
with the appropriate, individual server that is selected.

FIG. 7A depicts the XCOMHVTQ module determining
whether the communication macro call is a CNOS (step 701),
ALLOCATE (step 702), SEND (step 703), SEND ERROR
(step 704), RECEIVE (step 705), CONFIRM (Step 706),
CONFIRMED (step 707), FLUSH (step 708), PREPARE TO
RECEIVE (step 709), DEALLOCATE (step 710) STORAGE
REQUEST (Step 711) or SEVER (step 712).

FIG. 7B relates to the macro call being CNOS, which
means that a message group is to be joined. In step 713, it is
determined whether that message group has already been
joined. If so, then in step 716, buffers are allocated for any
subsequent messages or replies. If not, then in step 714 a
#PLEX TYPE=SEND macro call is made. Any buffers are
allocated in step 716. Once the allocation of buffers is con-
firmed in step 717, control is returned to the process that
initially made the communication macro call.

FIG. 7C relates to a macro call being ALLOCATE. In this
case, in step 718, the control block is initialized with data
required to initiate the requested transaction program. The
transaction programs may, for example, perform the SCHED-
ULE, INQUIRE and HISTORY functions described herein.

FIG. 7D relates to a macro call being SEND. First, in step
719, a check is made to determine if the control block and the
length of the data to be sent is correct. If so, then in step 720
a#PLEX TYPE=SEND macro call is made. If, in step 721, it
is determined that the number of records that have been sent
reaches a configured queue depth, then sending can be tem-
porarily stopped. In step 722, a message is sent that asks the
receiver for a confirmation before resuming sending of
records. Once a confirmation is received, in step 723, pro-
cessing can continue.

FIG. 7E relates to a macro call being SEND ERROR. When
this macro is called, a flag is set in the control block, in step
724, that indicates an error has occurred. Then, in step 725, a
message is sent informing the recipient that an error message
is coming next. In step 726, the specific error message is
encoded in the control block to be included in the next SEND.

FIG. 7F relates to a macro call being RECEIVE. In
response to this macro call, a #PLEXQ TYPE=DEQUEUE
call is made, in step 727, to retrieve the next sequential entry
from the PLEXQ chain. Steps 728 and 729 ensure that a
buffer exists to handle the entry so that it can be copied, in step

10

20

25

40

45

20

730, to that buffer. Once a copy exists in the buffer, another
#PLEXQ call can be made in step 731 to release to memory
used to store the entry in the PLEXQ chain.

In step 732, a check is made to determine if a SEND
ERROR has occurred. If so, then in step 737 appropriate flags
in the control block are set in anticipation of receiving further
error information. If not, then a check is made in step 733 to
determine if all expected data has been received. Once this
occurs, then in step 735 an appropriate flag is set and the
SEND/RECEIVE state is reset. If more data is expected, then
in step 734 a check is made to determine if a request to
confirm data has been received. If so, then a #PLEX macro
call is made to send a CONFIRMED message to the sender.

FIG. 7G relates to a macro call being CONFIRM. This
macro relates to techniques for effecting flow control and, in
step 738, forces a CONFIRMED response to a communica-
tions partner. It informs the partner that they can continue
sending data.

FIG. 7H relates to a macro call being CONFIRMED. In
step 738, a check is made to determine if communications are
in a CONFIRM state which means that the communications
partner is waiting to send additional data. In step 740, a
CONFIRMED #PLEXQ macro call is made to inform the
partner that more data can be sent and, in step 741, appropri-
ate flags in the control block are set to reflect the SEND/
RECEIVE state.

FIG. 71 relates to the macro call being FLLUSH. In this
instance a message has been received and an entry dequeued
and placed in a message buffer. In step 742, this message
buffer is removed and control returns to the calling transac-
tional program.

FIG. 7] relates to the macro call being PREPARE TO
RECEIVE. In this instance, data control flags in the control
block are set in step 743 that reflect the condition of being
ready to receive a message.

FIG. 7K relates to the macro call being DEALLOCATE. In
this instance, a flag is set in the control block in step 744 to
indicate that all data has been sent. Once this occurs, a #PLEX
TYPE=SEND macro can be called to send the control block
encoded in the 32 bytes of control information. This encoded
control block can be decoded to inform the recipient that all
data has been sent. This model of communication is how the
protocol of the present disclosure operates. A control block
for the sender’s process, task or job is configured with infor-
mation that is to be communicated to a recipient. This control
block is encoded in a predetermined manner into the 32 byte
control data that is part of a signaling service message. Once
the message is received by a recipient, the 32 byte control
information can be decoded and the information from the
encoded control block can be extracted.

FIG. 7L relates to the macro call being GET STORAGE.
This macro can be called at the beginning and end of any
communication exchange. At the beginning it can allow a new
buffer to be acquired and at the end it can free any buffers
(e.g., acquire a buffer with size={some default}). So, in step
746, a check is made if buffer storage already exists. If so,
then in step 747, the buffer is freed, and a new buffer of
appropriate size is acquired in step 748. If no current buffer
exists, then control passes directly from step 746 to step 748
where a new buffer is acquired.

FIG. 7M relates to the macro call being SEVER. In this
instance, communications are completed to the extent that
membership in a message group can be terminated. Thus, in
step 749, a #PLEXQ TYPE=LEAVE call is made and, in step
750, any message buffers are reset to an original size.

The XCOMHVTQ module also handles flow control.
Invoking XCOMIOB with a HISTORY command can result

US 9,229,794 B1

21

in a lot of data being returned to the requestor. Thus, on the
requestor’s end, control of data flow can be managed to
ensure the requestor can process the data and not be over-
loaded.

FIG. 8A and FIG. 8B depict a flowchart of an example
process for pacing communication in accordance with the
principles of the present disclosure. FIG. 8A is from the
perspective of the receiving side and FIG. 8B is from the
perspective of the sending side.

In step 802, a macro call is made to dequeue an entry from
the PLEXQ chain. If, in step 804, it is determined that all data
has been sent, then the process ends. If more data exists to be
sent, then a check is made in step 806 to see if the CONFIRM
flag has previously been set. If not, then continue dequeueing
entries. However, if the receiver is in the CONFIRM state,
then in step 808 a CONFIRMED message is constructed in
the control block. In step 810, the CONFIRMED message is
sent to the sender that informs them to resume sending data.

In step 812 of FIG. 8B, data is being sent via the #PLEX
TYPE=SEND macro call. If the count of messages sent is less
than a configured queue depth (as determined in step 814),
then sending of data continues until an end-of-data condition
is detected in step 822. The configured queue depth is set by
the receiver in their control block and sent to the sender as
encoded information in the 32 byte control information of a
signaling service message.

Once the queue depth is reached, the sender sets a flag in
step 816 indicating that it now will wait for a CONFIRMED
message from the receiver before sending more data. This
“waiting” state is sent to the receiver with a #PLEXQ macro
call in step 818. On the sender’s side a #PLEX
TYPE=RECEIVE call will reveal when a CONFIRMED
response is received in step 820. When this occurs, sending of
data can resume until an end-of-data condition is reached in
step 822.

#CONTROL

Another macro (#CONTROL) can be used to map the
CONTROL storage area that is inherent to signaling services.
It is a 32 byte area that is used to pass information about an
accompanying message so that the message does not neces-
sarily have to be retrieved in order to be routed or processed.
The 32 bytes related to a message can be encoded to contain
information such as: the sender’s name; the XCOM region
type (e.g., XCOMIJOB, worker server, etc.); Request type
(e.g., Transaction program ATTACH, command, execute rou-
tine); REQUEST/RESPONSE flag; data status flag (e.g.,
more data remains, confirm request, confirm response, end of
data); command to be processed; address of requestor’s NSA;
address of responder’s NSA; address of routine to execute;
requestor’s CD flags; responder’s CD flags; and a SEND
counter. The fields and constants mapped in the #CONTROL
macro are used to manage the communication protocol
between the different XCOM address spaces that are in a
message group.

#PLEX

The #PLEX macro invokes a signaling service interface
routine in the XCOMPLEX module to perform a desired
function. In particular the following functions can be per-
formed: JOIN a message group; LEAVE a message group;
QUIESCE a message group; SEND amessage to one member
of'the message group; SENDOTHR a message to other mem-
bers of the message group; SENDALL a message to all mem-
ber of the message group; REPLY to a specific message;
CONVERSE to send a message to one member and get a
reply; CONVOTHR to send a message to other members and
get replies; SAVE a message; DELETE a message; and
QUERY to ask for info about a member. The #PLEXQ macro

10

15

20

25

30

35

40

45

50

55

60

65

22

constructs the parameters and prepares the fields required to
perform a function in the XCOMPLEX service module.
#PLEXQ

The #PLEXQ macro acquires, frees, enqueues, and
dequeues entries that comprise the PLEXQ chain. Each
PLEXQ entry represents a portion of work to be processed by
one of the XCOM routines coded to process them. Entries in
the XCOMRANQ (global within an XCOM address space)
PLEXQ chain are removed and processed by a single task but
could have been added to the chain by a number of different
tasks (e.g., user written message exit routines running in
parallel). Messages specific to a conversation being pro-
cessed by an active transaction program are placed on the
“private” PLEXQ chain unique to the NSA with which the
transaction program is associated. The macro can allocate a
variable size buffer to accommodate the amount of data
received in an entry. The TYPE of #PLEXQ call can include
ALLOC (acquire storage for a PLEXQ entry); FREE (release
a FLEXQ entry storage); QUEUE (add a PLEXQ entry to the
PLEXQ chain); and DEQUEUE (unchain and address the
next PLEXQ entry in the chain). Chain entries can be identi-
fied, or referenced, by their data length, an address of the
entry, and an anchor address where chain is located.

USTAT Process

As mentioned above, potential worker servers in a message
group can be polled to determine their current utilization load.
In making this determination, operational parameters on each
of the worker servers can be evaluated. For example, when a
data transport server is initialized, it can have a parameter set
that indicates how many locally-initiated data transfer
requests it desires to handle concurrently, and it can have a
parameter set that indicates how many total data transfer
requests it desires to handle concurrently. Thus, the number of
data transfer requests currently being handled by a server can
be compared against these parameters to determine a measure
of'the utilization workload specific to the parameter setting of
that server.

FIG. 9 depicts a flowchart of an example process for deter-
mining utilization workload in accordance with the principles
of the present disclosure. In step 902, an incoming USTAT
command is detected at a server. In response, that server
counts, in step 904, the number of transfer requests it is
currently handling. By examining the control blocks for each
transfer request, the server can determine the number of
requests as well as whether they were local initiated or
remotely initiated.

In step 906, the count of transfer requests is compared to
the configured parameter for the maximum number of con-
current requests. This comparison provides a percentage
value based on the count and the allowed maximum (e.g. 70%
utilization provides a score of “70). If the score from step
906 equals or exceeds 100 as determined in step 908, then in
step 910 a penalty of 100 points is added to that score to arrive
at an intermediate score.

In step 912, a comparison is made between the number of
locally-initiated transfer requests and the configured maxi-
mum parameter value for these types of requests. If the num-
ber of local request equals or exceeds the configured param-
eter, then in step 914, 100 penalty points are added to the
initial score from step 906 or the intermediate score from step
910 to arrive at a final score. In step 914, the server can then
store this score in its control block and send an encoded
signaling service message to the USTAT originator in step
918.

On the receiving end, the USTAT originator can receive all
the replies from the different servers, dequeue them (as
described in the discussion of XCOMRANQ), and determine

US 9,229,794 B1

23

which of the servers has the lowest score. This server, then,
can be selected for scheduling of the data transfer request.

Referring to FIG. 10, a block diagram of a data processing
system is depicted in accordance with the present disclosure.
A data processing system 400, such as may be utilized to
implement the hardware platform 108 or aspects thereof, e.g.,
as set out in greater detail in FIG. 4-FIG. 9, may comprise a
symmetric multiprocessor (SMP) system or other configura-
tion including a plurality of processors 402 connected to
system bus 404. Alternatively, a single processor 402 may be
employed. Also connected to system bus 404 is memory
controller/cache 406, which provides an interface to local
memory 408. An I/O bridge 410 is connected to the system
bus 404 and provides an interface to an I/O bus 412. The I/O
bus may be utilized to support one or more busses and corre-
sponding devices 414, such as bus bridges, input output
devices (I/O devices), storage, network adapters, etc. Net-
work adapters may also be coupled to the system to enable the
data processing system to become coupled to other data pro-
cessing systems or remote printers or storage devices through
intervening private or public networks.

Also connected to the I/O bus may be devices such as a
graphics adapter 416, storage 418 and a computer usable
storage medium 420 having computer usable program code
embodied thereon. The computer usable program code may
be executed to execute any aspect of the present disclosure,
for example, to implement aspects of any of the methods,
computer program products and/or system components illus-
trated in FIG. 4-FI1G. 9.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various aspects of the present disclo-
sure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular aspects only and is not intended to be limiting of
the disclosure. As used herein, the singular forms “a”, “an”
and “the” are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be fur-
ther understood that the terms “comprises” and/or “compris-
ing,” when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations, ele-
ments, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of any means or step plus function elements in the claims
below are intended to include any disclosed structure, mate-
rial, or act for performing the function in combination with
other claimed elements as specifically claimed. The descrip-
tion of the present disclosure has been presented for purposes
of illustration and description, but is not intended to be

20

25

40

45

55

60

65

24

exhaustive or limited to the disclosure in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the disclosure. The aspects of the disclosure
herein were chosen and described in order to best explain the
principles of the disclosure and the practical application, and
to enable others of ordinary skill in the art to understand the
disclosure with various modifications as are suited to the
particular use contemplated.

The invention claimed is:

1. A method for generating a signaling service message for
a message group of a sysplex coupled together using a sig-
naling service, the method comprising:

executing, on a computer, a data transfer application that
communicates directly with a respective partner data
transfer application on each member of the message
group, the data transfer application comprised of a plu-
rality of interworking modules including an interface
module;

receiving by the interface module, on the computer, a
request related to sending the signaling service message;
the request being received from one of the other inter-
working modules;

based on the request, determining by the interface module,
on the computer, a type of message for the signaling
service message; based on the type of message, identi-
fying, by the interface module, on the computer, a cor-
responding routine of an operating system executing on
the computer which will generate the signaling service
message; and

invoking the corresponding routine that causes the operat-
ing system to generate the signaling service message;

constructing, by the interface module, on the computer,
contents to be included in the signaling service message;

wherein the interface module comprises a first control
block data structure local to the computer;

wherein the signaling service message comprises the first
control block data structure.

2. The method of claim 1, wherein the operating system

comprises a cross-system coupling facility.

3. The method of claim 1, wherein the contents relate to a
command to perform.

4. The method of claim 1, wherein the signaling service
message relates to one of:

leaving the message group; and

joining the message group.

5. The method of claim 1, wherein the signaling service
message relates to one of:

sending the signaling service message to one specific
member of the message group; and

sending the signaling service message to all members of
the message group.

6. The method of claim 1, wherein the signaling service
message relates to replying to a previous signaling service
message.

7. The method of claim 1, wherein the signaling service
message relates to a QUERY signaling service message.

8. A system for generating a signaling service message for
a message group of a sysplex coupled together using a sig-
naling service, the system comprising:

a processor and a memory coupled to the processor, the
memory configured to store program code executable by
the processor;

the program code, when executed by the processor, con-
figured to execute data transfer application that commu-
nicates directly with a respective partner data transfer
application on each member of the message group, the

US 9,229,794 B1

25

data transfer application comprised of a plurality of
interworking modules including an interface module;

the program code, when executed by the processor, con-
figured to receive by the interface module, a request
related to sending the signaling service message; the
request being received from one of the other interwork-
ing modules;

the program code, when executed by the processor, con-
figured to, based on the request, determine by the inter-
face module a type of message for the signaling service
message;

the program code, when executed by the processor, con-
figured to, based on the type of message, identify by the
interface module a corresponding routine of an operat-
ing system executing on the system which will generate
the signaling service message; and

the program code, when executed by the processor, con-
figured to invoke the corresponding routine that causes
the operating system to generate the signaling service
message;

wherein the program code is further configured to con-
struct, by the interface module, contents to be included
in the signaling service message;

wherein the interface module comprises a first control
block data structure local to the system;

wherein the signaling service message comprises the first
control block data structure.

9. The system of claim 8, wherein the operating system

comprises a cross-system coupling facility.

10. The system of claim 8, wherein the contents relate to a
command to perform.

11. The system of claim 8, wherein the signaling service
message relates to one of:

leaving the message group; and

joining the message group.

12. The system of claim 8, wherein the signaling service
message relates to one of:

sending the signaling service message to one specific
member of the message group; and

sending the signaling service message to all members of
the message group.

13. The system of claim 8, wherein the signaling service
message relates to replying to a previous signaling service
message.

14. The system of claim 8, wherein the signaling service
message relates to a QUERY signaling service message.

15. A computer program product for generating a signaling
service message for a message group of a sysplex coupled
together using a signaling service, the computer program
product comprising:

a computer readable storage medium having computer
readable program code embodied therewith, the com-
puter readable program code comprising:

computer readable program code configured to execute a
data transfer application that communicates directly
with a respective partner data transfer application on
each member of the message group, the data transfer
application comprised of a plurality of interworking
modules including an interface module;

20

25

30

35

40

45

50

26

computer readable program code configured to receive, by
the interface module, a request related to sending the
signaling service message; the request being received
from one of the other interworking modules;

computer readable program code configured to, based on

the request, determine by the interface module a type of
message for the signaling service message;

computer readable program code configured to, based on

the type of message, by the interface module a corre-
sponding routine of an operating system which will gen-
erate the signaling service message; and

computer readable program code configured to invoke the

corresponding routine that causes the operating system
to generate the signaling service message;

computer readable program code configured to receive, by

the interface module, a request related to sending the
signaling service message; the request being received
from one of the other interworking modules;

computer readable program code configured to, based on

the request, determine by the interface module a type of
message for the signaling service message;

computer readable program code configured to, based on

the type of message, by the interface module a corre-
sponding routine of an operating system which will gen-
erate the signaling service message; and

computer readable program code configured to invoke the

corresponding routine that causes the operating system
to generate the signaling service message;

computer readable program code configured to construct,

by the interface module, contents to be included in the
signaling service message;

wherein the interface module comprises a first control

block data structure;

wherein the signaling service message comprises the first

control block data structure.

16. The computer program product of claim 15, wherein
the operating system comprises a cross-system coupling
facility.

17. The computer program product of claim 15, wherein
the contents relate to a command to perform.

18. The computer program product of claim 15, wherein
the signaling service message relates to one of:

leaving the message group; and

joining the message group.

19. The method of claim 15, wherein the signaling service
message relates to one of:

sending the signaling service message to one specific

member of the message group; and

sending the signaling service message to all members of

the message group.

20. The computer program product of claim 15, wherein
the signaling service message relates to replying to a previous
signaling service message.

21. The computer program product of claim 15, wherein
the signaling service message relates to a QUERY signaling
service message.

